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Where disease threatens endangered wildlife populations, substantial resources

are required for management actions such as vaccination. While network

models provide a promising tool for identifying key spreaders and prioritizing

efforts to maximize efficiency, population-scale vaccination remains rare,

providing few opportunities to evaluate performance of model-informed

strategies under realistic scenarios. Because the endangered Hawaiian monk

seal could be heavily impacted by disease threats such as morbillivirus,

we implemented a prophylactic vaccination programme. We used contact

networks to prioritize vaccinating animals with high contact rates. We used

dynamic network models to simulate morbillivirus outbreaks under real and

idealized vaccination scenarios. We then evaluated the efficacy of model rec-

ommendations in this real-world vaccination project. We found that deviating

from the model recommendations decreased the efficiency; requiring 44%

more vaccinations to achieve a given decrease in outbreak size. However, we

gained protection more quickly by vaccinating available animals rather than

waiting to encounter priority seals. This work demonstrates the value of

network models, but also makes trade-offs clear. If vaccines were limited but

time was ample, vaccinating only priority animals would maximize herd

protection. However, where time is the limiting factor, vaccinating additional

lower-priority animals could more quickly protect the population.
1. Introduction
Infectious agents can negatively impact the demographics and fitness of wildlife

populations, and disease outbreaks have the potential to threaten the persistence

of small populations or endangered species [1,2]. Vaccination has become an

important tool for managing disease to protect threatened populations [3].

Network models can help to characterize heterogeneous contact patterns, and

are often suggested as useful means of optimizing disease control strategies

[4,5]. Network models have demonstrated the potential to maximize vaccination

efficiency by targeting those individuals or locations most connected in the net-

work [6,7]. However, we do not know of instances where such model

recommendations have been put into practice or evaluated under realistic field

conditions encountered during wildlife vaccination efforts. This study provides
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a novel application of network modelling both to inform and to

evaluate a vaccination programme.

The endangered Hawaiian monk seal (Neomonachus schauin-
slandi) could be severely impacted if faced with a disease

outbreak. Approximately 1400 monk seals exist as a small and

isolated population solely inhabiting the Hawaiian Archipelago

[8]. Previous research has demonstrated that Hawaiian monk

seals exhibit little genetic diversity [9] and are immunologically

naive to many pathogens (including morbillivirus) putting them

at high risk in the face of introduced pathogens [10]. Further, the

movements and habitats of monk seals in the human-populated

islands of the Archipelago put individuals in contact with

potential infection sources from anthropogenic impacts, dom-

estic species and other marine mammals [10,11]. Morbillivirus

is one pathogen threatening Hawaiian monk seals, and a great

concern in marine mammal conservation more broadly. Morbil-

liviruses, specifically canine distemper virus (CDV), phocine

distemper virus (PDV), and cetacean morbilliviruses (CeMV),

have long been detected in and associated with marine

mammal mortality events [12] and are emerging as a significant

mortality source [13]. Morbillivirus was suggested as a potential

agent in a major die-off that imperiled the closely related

Mediterranean monk seal (Monachus monachus) [14]. Because

infection is typically spread through aerosolized respiratory

droplets, the potential for spread is high even with casual contact

or close proximity between individuals [15].

Some vaccines have been adapted for wildlife use and

provide disease management options that have benefitted

species of high conservation value (e.g., black footed ferrets

in the United States [16], Ethiopian wolves in Ethiopia [17]).

Vaccination can be particularly effective against morbilliviruses

(for example measles [18], and rinderpest [19]). A monovalent

recombinant CDV vaccine, commercially produced for use in

ferrets (Purevax, Merial Inc., Duluth, GA, USA), has been effect-

ive for vaccinating other carnivores including seals [20] and

provides an option for protecting Hawaiian monk seals from

a morbillivirus outbreak. Vaccinating free-ranging wildlife is a

difficult undertaking, and there are many considerations in

deciding how to best deploy the vaccine [7,21,22]. Extensive

epidemiological modelling has demonstrated the need for

prophylactic vaccination of Hawaiian monk seals against

morbillivirus [23]. But, the question remained: how to most

efficiently use this vaccine to protect the population.

The heterogeneity and configuration of contacts between

individuals are critical in shaping epidemic parameters such

as rates of spread and epizootic size, making network

models a valuable tool in understanding disease dynamics

and planning interventions [24–26]. Network analysis is

often suggested as a useful tool in prioritizing vaccination

efforts by targeting the individuals with the highest contact

rates or probability of spreading disease [4,5,27]. Network

metrics of connectivity provide a particularly good guide for

targeting disease interventions because they relate well to

time-to-infection and overall risk [28]. Several studies have

used social network analysis and network simulation models

to suggest a targeted approach in disease management, includ-

ing studies of agricultural systems [22] as well as wildlife

populations [29,30]. Targeting the most connected individuals

in the network substantially increases efficiency in simulation

studies, requiring fewer vaccinations to decrease transmission

[6]. Yet, moving from network models to designing interven-

tions remains one of the great challenges in this growing field

of epidemiological research [31].
Our goal was to use network analysis to identify the key

seals to vaccinate based on contact patterns. To this end, we

used behavioural observations and seal sightings to construct

contact networks. We then used the descriptive statistics from

these empirical networks to guide our strategy and vaccinated

a major component of the Hawaiian monk seal population on

the island of Oahu. But, the implementation of the vaccination

programme brought logistical constraints and field conditions

beyond the model’s scope. Thus, we had a unique opportunity:

to test the efficacy of model recommendations applied to

reality. For this purpose, we used dynamic network models to

simulate epizootics and evaluate the efficiency of in-field reality

compared to the ideal vaccinations we had strategized.
2. Material and methods
(a) Study area and population
The endangered Hawaiian monk seal exists (solely) throughout

the Hawaiian Archipelago, including the human-inhabited

‘main’ Hawaiian Islands (MHI), as well as the smaller remote

islands and atolls making up the Northwestern Hawaiian Islands

(NWHI) (figure 1). The majority of the population (about 1100

seals) is in the NWHI, while about 300 animals inhabit the MHI

[8]. Given the long-time geographical isolation and genetic simi-

larity across the species’ range [9], all seals are considered to be

similarly susceptible to morbillivirus or other disease outbreaks.

While MHI and NWHI seals bear similar risk of exposure to PDV

or CeMV from other marine mammal species in Hawaiian

waters, MHI animals bear the additional risk of exposure to

CDV from domestic dogs. This project focused on the MHI sub-

population, as mixing between NWHI and MHI subpopulations

is uncommon on timescales relevant to morbillivirus spread [32].

Monk seal subpopulations on each island of the MHI are small

(tens of individuals versus more than 200 seals at some NWHI

sites), making it possible to achieve herd immunity with modest

numbers of animals vaccinated. Additionally, the MHI are more

accessible, with National Oceanographic and Atmospheric Admin-

istration (NOAA) staff and veterinarians available to monitor

animals throughout this effort. This research served as a pilot pro-

ject upon which future effort will be expanded to achieve herd

immunity throughout the species range.

Specifically, the island of Oahu was the target of the pilot vac-

cination programme. The island of Oahu contained 365 km of

shoreline and over 100 beaches used by 44 monk seals in 2015.

The primary source of data regarding seal sightings and locations

came from an extensive volunteer network that regularly moni-

tored beaches and collected publicly-reported sightings through

a hotline. Data from each seal sighting (seal identification, location,

day/time) were stored in a database maintained by NOAA.

(b) Analytical approach
We used a multi-step approach applying network analysis

(figure 2). First, we constructed a descriptive ‘behaviour network’

based on intensive behavioural observations of a population

subset to determine how well the network described contact rel-

evant to disease transmission processes. We then built a larger

descriptive ‘seal sightings network’ based on less intensive, more

comprehensive sightings data for all Oahu seals in 2015. From

the seal sightings network, we calculated network statistics both

to inform the strategy for vaccinating monk seals against

morbillivirus and to parameterize a model to evaluate efficiency

of the vaccination effort. Finally, we constructed a ‘dynamic

network model’ over which epizootics were simulated. We used

the extent of simulated outbreaks to measure the efficiency of

vaccination scenarios.
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Figure 1. A map of Oahu shows beaches with Hawaiian monk seal sightings reported in 2015 (grey circles). Areas of intensive behavioural observations are labelled.
Inset shows the species range.
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(c) Behaviour network: evaluate network fit
to behavioural observation

As a preliminary step in understanding the types of behaviour and

potential for pathogen-transmitting contact, we conducted intensive

observations of seal behaviour on two Oahu beaches with typical

monk seal habitat, Rabbit Island and Ka’ena Point, where numerous

seals were known to come ashore (figure 1; see the electronic sup-

plementary material for details). These observations were used to

add context to the coarser interaction data available in the seal sight-

ings database. We characterized types of seal contact, including

proximity at specified distances (less than 5 m, 5–10 m, 10–20 m,

20–50 m) and direct interactions (including gentle behaviours like

nudging and aggressive behaviours like playing or fighting).

We constructed a contact network based on observed associ-

ations between seals. We treated each seal as a node (point) and

each interaction (of any type) as an edge (line) in the network

created using the ‘igraph’ package [33] in program R [34]. As a

preliminary analysis, we calculated statistics for each node

(degree, eigenvector centrality, coreness, betweenness, closeness,

transitivity) to determine which types of interaction were best

represented by which network statistics (details in the electronic

supplementary material).
(d) Seal sightings network: construct population-wide
contact network

A more complete network of seals on Oahu was necessary to

assess population-wide heterogeneity of contact rates to inform
vaccination strategies. Based on the information from the behaviour

network (see the electronic supplementary material, results), we

determined that seals seen on the same beach in the same day

most likely came into close proximity or direct contact at some

point during the onshore session, thus providing sufficient contact

for transmission of morbillivirus. We queried the NOAA seal

sightings database for all sightings on Oahu in 2015 (to plan the

2016 vaccination effort). Preliminary investigations of sightings

from each month revealed no seasonal variation suggesting the

system was well-represented by the full year’s data (electronic sup-

plementary material, figure S2 and table S3). We treated each seal as

a node and created edges for each report of two seals sharing the

same beach in a given day (using ‘igraph’ in R). We calculated

degree for each node and used this statistic to rank seals from the

most to least connected. Degree performs well in capturing how

contact heterogeneity impacts disease spread [28]. We prioritized

those with the highest connectivity (highest contact rates) for vac-

cination. Additionally, we used the degree distribution observed

in this empirical network to inform the parameters of the dynamic

network model in our next step.
(e) Dynamic network model: construct a model based
on empirical network statistics

Based on the contact structure observed in the island-wide seal

sightings network, we constructed a dynamic network model.

We used the R package ‘EpiModel’ [35], which uses degree stat-

istics from an observed network to parametrize a model that

simulates the process of the contacts forming and dissolving
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SEIR, susceptible-exposed-infectious-removed; dark circles, vaccinated seals.

Table 1. Degree distribution is summarized in ranked node sets. (Seal
sightings network (SSN) shows the observed data, which were then rescaleda

for use as target values to parametrize the dynamic network model (DNM).)

node set
(5 each)

SSN mean
degree

degree target
values (SSN
rescaled)

DNM output
degree (mean
of simulations)

total no.

of edges 221.00 4.25 4.30

overall 9.85 0.19 0.19

set 1 0.25 0.00 0.00

set 2 3.00 0.06 0.07

set 3 5.00 0.10 0.11

set 4 7.60 0.15 0.15

set 5 10.40 0.20 0.20

set 6 12.00 0.23 0.23

set 7 13.80 0.27 0.26

set 8 15.60 0.30 0.30

set 9 21.00 0.40 0.41
aDegree statistics from the sightings network based on a full year of
sightings were down-scaled for use with daily time steps in the dynamic
network model (see the electronic supplementary material for details).
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across the network at each time step in a simulated epidemic. Dis-

ease dynamics can then be simulated across this dynamic contact

network. The ability to simulate disease spread over a dynamic

network in EpiModel overcomes one of the long-standing limit-

ations in modelling disease processes where networks are treated

as static [25,31].

Scaling network models appropriately to pathogen-specific

transmission attributes and infectious periods is important to

reflect the number of contacts occurring in a timespan relevant to

the disease process [25,36]. We used a daily time step in the

model to allow multiple steps within the two-week infectious

period of morbillivirus. Because the observed network was

based on a full year of observations, the number of contacts had

to be rescaled to reflect the probability of contacting another indi-

vidual on a daily basis. Briefly, based on the frequency of seal

sightings across Oahu, we considered a week of effort to capture

a single full-island snapshot constituting one model time step

(see the electronic supplementary material for details).

To represent the heterogeneity in contact within the Oahu

monk seal population, we assigned the nodes in the dynamic

network model contact rates based on the degree distribution

of the seal sightings network. The 45 nodes (representing the

44 observed monk seals plus one infectious seal) of the dynamic

network model were split into nine sets of five (because specify-

ing a target degree for each node would over-fit the model)

where set 1 was assigned the average degree of the five seals

with lowest degrees in the seal sightings network, set 9 was

assigned average degree of the five seals with the highest

degrees, etc. (table 1). Node sets did not influence which nodes

could come into contact (assortivity parameter ¼ 0). Because it

is typical for a seal to rest onshore in one area for a portion of

a day and then use a different area another day, we set the con-

tact duration to allow contacts to form and dissolve at each time

step (duration parameter ¼ 1 day).
( f ) Vaccinate free-ranging Hawaiian monk seals
Seals identified by the seal sightings network as having high

contact tendencies (i.e. potential key disease spreaders, based on
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degree) were given high priority for vaccination. However, other

factors also impacted priority, as any seal with a suspected

health concern was avoided. Further, though we did not anticipate

any difference in response between males and females, as an

extra caution with an endangered species, reproductive females

were avoided during this pilot stage of the vaccination effort.

In addition to these limitations on vaccination candidates, logistics

also played a role in which individuals received vaccinations.

A seal had to be on an accessible beach and in a position

allowing safe approach.

The initial vaccination effort for wild Hawaiian monk seals

began on Oahu in February 2016. Sufficient doses were available

to vaccinate all Oahu monk seals; however, expiration dates

ranged from April to October 2016. Vaccination efforts ended in

October 2016, prior to the expiration date of available vaccines.

Our goal, therefore, was to vaccinate a sufficient number of animals

to achieve herd immunity as efficiently as possible. Seals were

vaccinated according to protocols developed by NOAA based on

data from captive seals (P.K. Yochem 2013, unpublished data;

F. Gulland, T. Kendall 2011, unpublished data). In brief, routes of

vaccine administration included hand injection and pole syringe

injection (Jab Stick, Dan-Inject, Austin, TX, USA). Seals received a

booster vaccination three or more weeks after the initial vaccine

was administered.

(g) Evaluate ideal versus real vaccination efficiency with
SEIR model on simulated network

Once vaccination efforts were completed, we evaluated how well

our network-informed strategy held up in the face of field realities.

We used the dynamic network model to represent the seal popu-

lation through which an epizootic could spread after various

vaccination scenarios. We used an SEIR model to model the flow

of animals between disease states from susceptible (S), to exposed

(E), to infectious (I), to removed (R). The state ‘R’ may encom-

pass any animals removed from the susceptible pool whether

through post-infection immunity, vaccination-induced immunity,

or disease-induced mortality. Given the severity of morbillivirus

outbreaks in other marine mammal species, we assume that

most seals would die rather than recover from infection. We para-

metrized the SEIR model based on previous epidemiological

modelling in which Baker et al. [23] simulated a wide range of scen-

arios to investigate the potential impacts of a morbillivirus

outbreak in monk seals. To isolate and thus evaluate the role of

contact heterogeneity in the impact achieved by our vaccination

efforts, we based our model parameters on the worst case values

of the Baker et al. [23] model (i.e. those that would most favour dis-

ease transmission and outbreak perpetuation). Therefore, we set

disease transmissibility at 1.0, and the latency period (time spent

in the ‘exposed’ compartment) and infectious time (time in

‘infected’ compartment) were each 14 days (electronic supplemen-

tary material, table S4, and see the electronic supplementary

material for trials with other parameter values). We varied only

which seals were vaccinated (i.e. which nodes were initialized in

the ‘removed’ state before the simulated outbreak).

We evaluated the efficiency of our vaccination effort based on

the number of nodes infected at the end of each simulated outbreak

after a given level of vaccination. We ran three different model

scenarios. The ‘Baseline’ scenario was initialized with 44 nodes

susceptible, a single node infected, and no vaccinations given.

For the ‘Ideal’ scenario, the highest contact seals (high degree

nodes) were vaccinated (designated as removed, ‘R’, at model

initialization, repeated for 1 . . . 20 vaccinations mimicking num-

bers vaccinated in reality). For the ‘Real’ scenario, nodes were

initialized as ‘R’ according to degree corresponding with contact

rate of seals in the order actually vaccinated, i.e. if the first seal

vaccinated had a low degree according to the seal sighting

network, a low-degree node in the dynamic network model
would be classified as ‘R’ before running the SEIR model (repeated

for 1 . . . 20 vaccinations). We ran each model for 1000 simulations

over 100 (daily) time steps (sufficient time for epidemics to run

their course in preliminary trials) at which nodes came into contact

according to contact structure established by the dynamic

network model, and individuals became exposed, infected, or

removed according to parameters of the SEIR model (electronic

supplementary material, table S4).

The Real scenario differs from the Ideal for practical reasons.

For example, we did not always find the ideal seal at the ideal

time. We created a fourth scenario based on the outputs of the

Real and Ideal models. Labelling this the ‘Wait’ scenario, we sup-

posed that non-priority seals were passed up while waiting to

vaccinate only the top priority seals (those with the 10 highest

degrees). In the Wait scenario, we assigned each level of vaccination

the outcomes from the Ideal model, but the level of vaccination was

only increased when priority seals were vaccinated (i.e. if the first

six seals vaccinated only included two priority seals, the Real scen-

ario would show the impact of all six vaccinations, while the Wait

scenario would only show the impact of two priority vaccinations).

This scenario allowed us to determine the best approach if time or

vaccine supplies were more limiting.
3. Results
(a) Behaviour network: evaluate network fit

to behavioural observation
A total of 14 individual seals (32% of the island-wide popu-

lation) were observed on Oahu. Seventy-eight per cent of all

observed seal associations (n ¼ 825) were based on proximity

alone (no body contact between individuals occurred). The

remaining 22% of associations involved direct contact (14.5%

involved gentle interactions, 7.5% were aggressive interactions).

Seal interactions based on proximity or gentle interactions

were well represented in the contact network (electronic sup-

plementary material, figure S1), and degree was strongly

correlated with observed levels of interaction (electronic

supplementary material, table S1). Conversely, none of the net-

work statistics correlated with the time spent in aggressive

interactions, indicating that seals involved in fight or play

might seek out such interactions regardless of the number of

other seals with which they casually interact. However, contact

defined by shared beach location represented behaviours

relevant to spreading diseases, such as morbillivirus, that

require only close proximity for transfer of aerosol particles.

(b) Seal sightings network: construct population-wide
contact network

The seal sightings network based on all Oahu seal sightings for

2015 (n ¼ 2540 sightings, 44 seals) showed high connectivity

between seals, with heterogeneity in contact patterns

(figure 3). Mean distance between nodes was 1.96, indicating

fewer than two intermediate contacts connecting two average

seals. The network’s cohesive structure (figure 3a) indicated a

lack of key individuals whose removal could fully dissolve

the network. The mean degree of the network was 9.85, but

nearly half of nodes (21 seals) had 10 or fewer links in the net-

work, whereas the five most connected seals accounted for 24%

of the total links in the network (figure 3b). The heterogeneity

in degree and lack of distinct clusters suggested that targeting

high-degree nodes to make the network sparser would be more

effective than targeting a few central nodes to fragment the
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Table 2. Hawaiian monk seals vaccinated against morbillivirus on Oahu, Hawaii, in 2016.

male female adult juvenile weanling total

no. seals fully vaccinated:

11 10 12 5 4 21a

no. seals partially vaccinated:

2 1 2 1 0 3b

aTwo seals died from causes unrelated to vaccination.
bOne seal died from causes unrelated to vaccination prior to booster.
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population into hard-to-reach subgroups [31]. The 10 highest-

degree seals were given top priority for vaccination, followed

by those ranked 11–20.

(c) Dynamic network model: construct a model based
on empirical network statistics

The dynamic network model provided a close approximation

of the contact patterns described by the seal sightings

network. After running a 1000 iteration burn-in period, the

degree of nodes from the dynamic network model closely

matched the target values (based on the degree distribution

from the seal sightings network) used to parametrize the

model (table 1).

(d) Vaccinate free-ranging Hawaiian monk seals
During the field effort from February-October 2016, we fully

vaccinated 21 wild Hawaiian monk seals on Oahu (table 2).

An additional three seals received an initial vaccination, but

no booster. The success of this effort required an average of

two staff dedicated for field trips to seek out vaccination candi-

dates one day per week. Additionally, staff responded to

volunteer reports of candidate seals onshore on accessible bea-

ches. Volunteer reports were particularly relied upon for seals
needing boosters since search efficiency greatly diminished

when seeking one particular seal. NOAA staff delivered 3–10

vaccinations (initial and booster) per month. While our goal

was to booster animals within 3–5 weeks of the initial vac-

cination, the booster time accomplished ranged from 21 to 79

days (mean ¼ 34 days).

Eight of the top 10 seals on the priority list were

vaccinated. The remaining top candidates primarily came

ashore on the offshore islet, Rabbit Island. While these seals

were sighted regularly during the vaccination effort (via

spotting scope from Oahu’s mainland), they were never

accessible on the days favourable for boating to the islet.

Two more seals in the network top 20 remained unvaccinated

at the end of the effort: one favoured rocky beach spots

and another was not sighted during the 2016 vaccination

effort. In addition to seals represented in the original net-

work, four weaned pups were vaccinated that were not

part of the population at the time the seal sighting network

was constructed.

(e) Evaluate ideal versus real vaccination efficiency with
SEIR model on simulated network

The Baseline SEIR model, showing the likely pattern of an epi-

zootic spreading through an unprotected population, resulted
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in an average of 22.3 infected nodes and an epizootic peaking

on day 52 (figure 4). The Real and Ideal scenarios showed simi-

lar patterns with epizootics peaking slightly earlier (day 47 and

40, respectively), but the infection rate and total numbers of

animals infected decreased in model runs with more nodes

‘removed’ at model initialization (figure 4). In the Real scen-

ario, the first 10 nodes vaccinated reduced the total number

infected to 11.2 nodes, whereas in the Ideal scenario after 10

vaccinations there were only 5.3 infected nodes (averaged

over 1000 model runs). The differences between Real and

Ideal scenarios were minimal in runs after 20 vaccinations,

with outbreaks of 2.1 nodes in the Real scenario and 0.9

nodes in the Ideal. The improved efficiency of the Ideal over

the Real vaccination scenario was consistent over a wide

range of other parameters used in supplemental model trials

(electronic supplementary material, figure S3).

In the Ideal scenario, there was a greater decrease in

numbers infected with each increase in number vaccinated

(figure 5). To achieve a given decrease in numbers infected

during an outbreak, the Real scenario required 44% more

vaccinations than the Ideal scenario. However, if we consider

the timing with which animals were detected, as in the Wait

scenario, it became obvious that foregoing vaccination of

non-priority seals while waiting for the Ideal vaccination

candidates would have produced a slower decrease in

numbers infected (figure 5).
4. Discussion
This work provides a rare example of widespread effort to

vaccinate an endangered marine mammal population. The

numbers of monk seals vaccinated in this initial effort are

expected to be sufficient to limit the spread of disease, should

morbillivirus be soon introduced into the subpopulation

on Oahu.
We took advantage of the unique opportunity to assess the

effectiveness with which network model recommendations

were applied to a real-world disease management programme.

Extensive reports of identifiable individuals were a critical

component in our ability to construct a full contact network

for targeting specific individuals for vaccination. Our applica-

tion of a rigorous modelling approach, simulating epidemics

over a dynamic network based on empirical association

data, was instrumental in evaluating the use of the network-

recommended targeted vaccination approach. While precisely

following network recommendations could decrease disease

transmission with the fewest numbers of vaccines, we found

that vaccinating extra lower-priority animals let us achieve

population protection more quickly than waiting for access to

the ideal set of vaccination candidates.

While network analysis has been used to inform vacci-

nation or management strategies [6,22,29,30], we know of no

programmes implementing a network-informed vaccination

strategy or evaluating such a strategy once implemented. If,

as in Rushmore et al. [6], we had found contact rates highly cor-

related with characteristics such as sex or age, it may have

made the group-targeted approach more efficient than target-

ing individuals. Targeting individuals or specific locations

may be more practical in different settings where they are

more predictably sighted or contained (as in agriculture) [7].

Our behavioural observations add to the understanding

of social behaviour and interactions in seal populations and

compliment previous work on contact rates of monk seals in

the remote NWHI [23]. In one location in the NWHI, where

the monk seal subpopulation is much denser than on Oahu

(20 seals km21 of coastline versus 0.12 seals km21), Baker

et al. [23] calculated a network with one large component

indicating high contact among all seals in the population.

They found heterogeneities by sex and age classes, with sub-

adult males showing the highest rates of contact. Our results

were partially similar; adult males were more likely to be

involved in aggressive interactions, but seals of all age and
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sex classes were similarly represented in proximity associ-

ations. By contrast, Wolf et al. [37] studied a colonial sea lion

species and found that maternal territories formed the basis

of localized contact structure.

We must acknowledge potential limitations or compli-

cations with our analysis. We know that our contact network,

while it probably included all seals on Oahu during the obser-

vation period, cannot possibly capture every contact. Not all

beaches were surveyed every week, and we did not observe

seal interactions at night or in water. We know that missing

contacts can be problematic and bias network results [38].

However, given that all seals spend part of their time out to

sea and are not always observed, we do not expect systematic

bias in missing contacts, making the relative contact rates repre-

sentative though not numerically exact. Additionally, because

we defined the study area as the entire island of Oahu, we

avoided drawing artificial boundaries, which can have more

serious implications than missing contacts of the nodes

included in the network [38].

Animal movement complicates disease management

[39–41]. Though Oahu is an island, Oahu monk seals are not

a truly closed population. Over the course of our study, pups

were born and animals died. Four of the animals vaccinated

were weaned pups not included in the original network

based on 2015 observations, and three animals died of causes

unrelated to vaccination after they were vaccinated (table 2).

Yet, we did not incorporate demographic processes into the

simulation models as this was beyond the primary goal of

the analysis and unlikely to have substantial impact in the

short time of the simulated outbreaks. Vaccination efforts of

sufficient coverage can still be (and have been) effective in

unbounded populations, both in terms of cost-effectiveness

[42] and effectively halting disease spread [43].
The current analysis evaluated efficiency of our efforts to

vaccinate sufficient numbers of individuals to interrupt poten-

tial chains of pathogen transmission. We do not have the data

to assess efficacy of the vaccinations, as disease exposure trials

would not be ethical with an endangered animal. However,

previous studies in captive animals showed that Hawaiian

monk seals mount a sufficient antibody response after vacci-

nation with the product used in this study (P.K. Yochem

2013, unpublished data; F. Gulland, T. Kendall 2011, unpub-

lished data). Seroconversion has also been documented in

other marine mammals [20,44], and veterinary trials have

demonstrated antibody response which is protective against

CDV infection in domestic species [45].

Through our research, we learned that despite the best

data availability and modelling efforts to inform a manage-

ment strategy, with reality comes trade-offs. Here, we saw

that going against the network-recommended priority vacci-

nation targets required more vaccinations to achieve a given

level of immunity in the Oahu subpopulation; however, we

were able to administer more vaccines to non-priority ani-

mals in a more time-efficient manner than restricting efforts

to only specified animals. The network-informed strategy

would be important for maximizing probability of achieving

herd immunity if faced with limited vaccine doses. However,

if time is the more constraining factor, vaccinating available

animals may be the quickest route to herd immunity (or

other desired management outcome). Future vaccination

efforts for the Hawaiian monk seal species will probably

focus on working most time-efficiently to build herd immu-

nity in as many segments of the population as possible.

Vaccination efforts for Hawaiian monk seals are expected to

continue, pending vaccine availability and will build on

this pilot effort to protect the remaining subpopulations
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across the species’ range and eventually shift to a mainten-

ance phase, where vaccination efforts specifically target

new, susceptible members of the population (births).
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